Андрейченко А.Е., Ермак А.Д., Гаврилов Д.В.,Новицкий Р. Э., Драпкина О. М., Гусев А.В.
Цель. Разработать с использованием алгоритмов машинного обучения модели прогнозирования госпитализаций пациентов с артериальной гипертензией (АГ) в течение 12 мес. и провести их валидацию на данных реальной клинической практики.
Материал и методы. По сведениям из деперсонифицированных электронных медицинских карт, полученных из платформы Webiomed, отобрано 1165770 записей 151492 пациентов с АГ. В качестве предикторов, после первоначальной селекции, были использованы анамнестические, конституциональные, клинические, инструментальные и лабораторные данные, широко применяемые в рутинной врачебной практике, всего 43 признака. Для создания моделей применялись инструменты автоматического машинного обучения. Рассматривался широкий набор алгоритмов, включая логистическую регрессию, методы, основанные на деревьях решений c использованием градиентного бустинга и бэггинга, дискриминантный анализ, алгоритм на основе нейронных сетейи наивный байесовский классификатор. Для внешней валидации использованы данные отдельного региона.
Результаты. Наилучшие результаты показала модель XGBoost, достигнув AUROC (площадь под характеристической кривой) 0,849 (95% доверительный интервал: 0,825-0,873) при внутреннем тестировании и 0,815 (95% доверительный интервал 0,797-0,835) при внешней валидации.
Заключение. В результате исследования разработана новая высокоточная модель прогнозирования госпитализации пациентов с АГ по данным реальной клинической практики. Результаты внешней валидации предложенного прогностического инструмента показали относительную устойчивость к новым данным из другого региона, что в совокупности с показателями качества отражает возможность ее апробации в реальной клинической практике.
Скачать статью pdf|985,4 КБ
Андрейченко А.Е., Ермак А.Д., Гаврилов Д.В.,Новицкий Р. Э., Драпкина О. М., Гусев А.В. Разработка и валидация моделей машинного обучения, прогнозирующих госпитализации пациентов с артериальной гипертензией в течение 12 месяцев. Кардиоваскулярная терапия и профилактика. 2025;24(1):4130.doi: 10.15829/1728-8800-2025-4130. EDN YXVRIN
Поделиться
Подпишитесь на нашу рассылку
Хотите получать интересную и полезную информацию о цифровом здравоохранении и искусственном интеллекте для медицины?
Включайтесь в нашу рассылку!